Pancreatic steatosis – a clinically serious disease?
David Solil1, Petr Dítě1, Marie Přecechtělová1, Martina Bojková Orcid.org 2, Jiří Dolina Orcid.org 1, Bohuslav Kianička Orcid.org 3
+ Affiliation
Summary
Pancreatic steatosis is a clinical term for fat buildup in the pancreas and is common in older and/ or obese patients because it‘s closely linked to metabolic syndrome. The pancreas plays a key role in regulating blood sugar levels by secreting insulin and other hormones. Fat infiltration of the pancreas can lead to impaired function. Prevalence increases with age and obesity. Its clinical implications are not as widely discussed as those of hepatic steatosis, which is considered its most significant predictive factor. Pancreatic steatosis has not yet been fully accepted by the wider professional community as a separately defined disease. However, due to its close link to type 2 diabetes mellitus, it may contribute to the development or worsening of insulin resistance, cardiovascular disease, and acute pancreatitis, and its association with the risk of developing pancreatic cancer is also being investigated. Given the growing obesity pandemic, increasing life expectancy, and ever-improving and more accessible diagnostic methods, its incidence can be expected to increase in the future. This brings new challenges in terms of the need to establish follow-up care and treatment for these patients. Further monitoring and research in this area is still necessary, as there are still only a limited number of studies addressing the precise pathophysiological mechanisms between pancreatic steatosis and its clinical impact on patients.
Keywords
pancreatic steatosis, pancreas, hepatic steatosis, metabolic syndrome, obesity, chronic pancreatitis, pancreatic carcinomaTo read this article in full, please register for free on this website.
Benefits for subscribers
Benefits for logged users
Literature
1. Zhang CL, Wang JJ, Li JN et al. Nonalcoholic fatty pancreas disease: an emerging clinical challenge. World J Clin Case 2021; 9(23): 6624– 6638. doi: 10.12998/ wjcc.v9.i23.6624.
2. Pagkali A, Makris A, Brofidi K et al. Pathophysiological mechanisms and clinical associations of non-alcoholic fatty pancreas disease. Diabetes Metab Syndr Obes 2024; 17: 283– 294. doi: 10.2147/ DMSO.S397643.
3. Bobulescu IA, Lotan Y, Zhang J et al. Triglycerides in human kidney cortex: relationship with body size. PLoS One 2014; 9(8): e101285. doi: 10.1371/ journal.pone.0101285.
4. Le MH, Devaki PP, Jun DW et al. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in United States. PLoS One 2017; 12(3): e0173499. doi: 10.1371/ journal.pone.0173499.
5. Ogilvie RF. The islands of Langerhans in 19 cases of obesity. J Pathol Bacteriol 1933; 37(3): 473– 481. doi: 10.1002/ path.1700370314.
6. Olsen TS. Lipomatosis of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol Microbiol Scand A 1978; 86A(5): 367– 373. doi: 10.1111/ j. 1699-0463.1978.tb02058.x.
7. Stamm BH. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas autopsy: a systematic study of 12 autopsies in patients witout known pancreatic disease. Hum Pathol 1984; 15(7): 677– 683. doi: 10.1016/ s0046-8177(84)80294-4.
8. Smits MM, van Geenen EJ. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol 2011; 8(3): 169– 177. doi: 10.1038/ nrgastro.2011.4.
9. Tariq H, Nayudu S, Akella S et al. Non alcoholic fatty pancreatic disease: a review of literature. Gastroenterol Res 2016; 9(6): 87– 91. doi: 10.14740/ gr731w.
10. Yu TY, Wang CY. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetol Invest 2017; 8(6): 735– 747. doi: 10.1111/ jdi.12665.
11. Lesmana CR, Pakasi LS, Inggriani S et al. Prevalence of non-alcoholic fatty pancreas disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol 2015; 15: 174. doi: 10.1186/ s12876-015-0404-1.
12. Wu WC, Wang CY. Association between non-alcoholic fatty pancreas disease (NAFPD) and the metabolic syndrome: a case control retrospective study. Cardiovsc Diabetol 2013; 12: 77. doi: 10.1186/ 1475-2840-12-77.
13. Singh RG, Yoon HD, Wu LM et al. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic revue, meta-analysis and meta-regression. Metabolism 2017; 69: 1– 13. doi: 10.1016/ j. metabol.2016.12.012.
14. Ou HY, Wang CY, Yang YC et al. The association between nonalcoholic fatty pancreas disease and diabetes. PLoS One 2013; 8(5): e62561. doi: 10.1371/ journal.pone.0062561.
15. Lee JS, Kim SH, Jun DW et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol 2009; 15(15): 1869– 1875. doi: 10.3748/ wjg.15.1869.
16. Al-Haddad M, Khashab M, Zyromski N et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas 2009; 38(6): 672– 675. doi: 10.1097/ MPA.0b013e3181a9d5af.
17. Wang C, Zhang M, Wu J et al. The effect and mechanism of TLR9/ KLF4 and FFA-induced adipocyte inflammation. Mediators Inflamm 2018; 2018: 6313484. doi: 10.1155/ 2018/ 6313484.
18. Gotoh K, Inoue M, Shiraishi K et al. Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas disease. PLoS One 2012; 7(12): e53154. doi: 10.1371/ journal.pone.0053154.
19. Lin M, Weng SY, Chai KF et al. Lipidomics as a tool of predicting progression from non-alcoholic fatty pancreas disease to type 2 diabetes mellitus. RSC Adv 2019; 9(71): 41419– 41430. doi: 10.1039/ c9ra07071k.
20. Tannenbaum BM, Brindley DN, Tannenbaum GS et al. High fat feeding alters both basal and cross-induced hypothalamic-pituitary-adrenal activity in the rat. Amer J Physiol 1997; 273(6): E1168– E1177. doi: 10.1152/ ajpendo.1997.273.6.E1168.
22. Bonora E. The metabolic syndrome and cardiovascular disease. Ann Med 2006; 38(1): 64– 80. doi: 10.1080/ 07853890500401234.
23. Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: regulator of inflammation. Best Pract Res Clin Endocrinol Metab 2005; 19(4): 547– 566. doi: 10.1016/ j. beem.2005.07.009.
24. Petrov MS, Taylor R. Intra-pancreatic fat depoition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol 2022; 19(3): 996716. doi: 10.1038/ s41575-021-00551-0.
25. Catanzaro R, Cuffari B, Italia A et al. Exploring the metabolic syndrome: nonalcoholic fatty pancreas disease. World J Gastroenterol 2016; 22(34): 760– 765. doi: 10.3748/ wjg.v22.i34.7660.
26. Altinel D, Basturk O, Sarmiento M et al. Lipomatous pseudohypertrophy of the pancreas: a clinicopathologically distinct entity. Pancreas 2010; 39(3): 392– 397. doi: 10.1097/ MPA.0b013e3181bd2923.
27. Lee Y, Lingway I, Szczepaniak LS et al. Pancreatic steatosis: harbinger of type 2 diabetes in obese patients. Int J Obes 2010; 34(2): 396– 400. doi: 10.1038/ ijo.2009.245.
28. Chang ML. Fatty pancreas-centered metabolic basis of pancreatic adenocarcinoma: from obesity, diabetes, and pancreatitis to oncogenesis. Biomedicines 2022; 10(3): 692. doi: 10.3390/ biomedicines10010602.
29. Silva L, Fernandes MSS, Lima MA et al. Fatty pancreas: disease or finding? Clinics 2021; 76: e2439. doi: 10.6061/ clinics/ 2021/ e2439.
30. Nascimento FA, Barbosa-da-Silva S, Fernandes-Santos S et al. Adipose tissue, liver and structural alterations in C57BL/ 6 mice and high-fat-high sucrose diet supplemented with fish oil (n-3 fatty acid rich oil). Exp Toxicol Pathol 2010; 62(1): 17– 25. doi: 10.1016/ j. etp.2008. 12.008.
31. Lee Y, Hirose H, Ohneda M et al. Beta-cell lipotoxicity in the management of non-insulin- dependent diabetes of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A 1994; 91(23): 10878– 10882. doi: 10.1073/ pnas.91.23.10878.
32. de Wilde J, Mohren R, van den Berg S et al. Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscles of C57BBL/ 61 mice. Physiol Genomics 2008; 32(3): 360– 369. doi: 10.1152/ physiolgenomics.00219.2007.
33. Chtioui H, Semela D, Ledermann M et al. Expression and activity of cytochrome P450 2E1 in patients with non-alcoholic steatosis and steatohepatitis. Liver Int 2007; 27(6): 764– 771. doi: 10.1111/ j. 1478-3231.2007.01524.x.
34. Yu TY, Wang CY. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Invest 2017; 8(6): 735– 747. doi: 10.1111/ jdi.12665.
35. van Geenen EJ, Smits MM, Scheuder TC et al. Nonalcoholic fatty liver disease is related to nonalcohilic fatty pancreas disease. Pancreas 2010; 39(8): 1185– 1190. doi: 10.1097/ MPA. 0b013e3181f6fce2.
36. Filippatos TD, Alexis K, Mavrikaki V et al. Non-alcoholic fatty pancreas disease: role of metabolic syndrome, “prediabetes”, diabetes and atherosclerosis. Dig Dis Sci 2022; 67(1): 26– 41. doi: 10.1007/ s10620-021-06824-7.
37. Yamazaki H, Tauchi S, Kimachi M et al. Association between pancreatic fat and incidence of matabolic syndrome: a 5-year Japanese cohort study. J Gastroenterol Hepatol 2018; 33(12): 2048– 2054. doi: 10.1111/ jgh.14266.
38. Wang CY, Ou HY, Chen MF et al. Enigmatic ectopic fat: prevalence of non-alcoholic fatty pancreas disease and its associated factors in Chinese population. J Am Heart Assoc 2014; 3(1): e000297. doi: 10.1161/ JAHA.113.000297.
39. Sijens PE, Edens MA, Bakker SJ et al. MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol 2010; 16(16): 1993– 1998. doi: 10.3748/ wjg.v16.i16.1993.
40. Dela Corte C, Mosca A, Majo E et al. Nonalcoholic fatty pancreas disease and nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol 2015; 83(5): 656– 662. doi: 10.1111/ cen.12862.
41. Ragivarodom M, Geeratragool T, Pausawasdi N et al. Fatty pancreas: linking pancreas pathophysiology to nonalcoholic fatty liver disease. J Clin Transl Hepatol 2022; 10(6): 1229– 1239. doi: 10.14218/ JCTH.2022.00085.
42. Grundy SM, Cleemen JI, Daniels SR et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/ National Heart, Lung and Blood Institute Scientific Statement. Circulation 2005; 112(17): 2735– 2752. doi: 10.1161/ CIRCULATIONAHA.105.169404.
43. Haslam DW, James WPT. Obesity. Lancet 2005; 366(9492): 1197– 1209. doi: 10.1016/ S0140- 6736(05)67483-1.
44. Pinnick KE, Collins SC, Londos C et al. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 2008; 16(3): 522– 530. doi: 10.1038/ oby.2007.110.
45. Sepe PS, Ohri A, Sanaka S et al. A prospective evaluation of fatty pancreas by using EUS. Gastroint Endosc 2011; 73(5): 987– 993. doi: 10.1016/ j. gie.2011.01.015.
46. Ozturk K, Dogan T, Celikkamat S et al. The association of fatty pancreas with subclinical atherosclerosis in non alcoholic fatty liver disease. Eur Gastroenterol Hepatol 2018; 30(4): 411– 417. doi: 10.1097/ MEG.0000000000001059.
47. Sezgin O, Yaras S, Özdogan O. Pancreatic steatosis is associated wit both metabolic syndrome and pancreatic steffness detected by ultrasound elastography. Dig Dis Sci 2022; 67(1): 293– 304. doi: 10.1007/ s10620-021-06844-3.
48. Sodhi KS, Vyas S, Khandelwa N et al. Complete pancreatic lipomatosis. Indian J Gastroenterol 2010; 29(2): 65. doi: 10.1007/ s12664-010-0023-2.
49. Seppälä-Lindroos A, Vehkavaara S, Häkkinen M et al. Fat accumulation in the liver is associated with defects in insulin supression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002; 87(7): 3023– 3028. doi: 10.1210/ jcem.87.7.8638.
50. Kotronen A, Seppälä-Lindroos A, Bergholm R et al. Tissue specificity of insulin resistence in humans: fat in the liver rather than than muscle is associated with features of the metabolic syndrome. Diabetologia 2008; 51(1): 130– 138. doi: 10.1007/ s00125-007-0867-x.
51. Yamazaki H, Tsuboya T, Katanuma et al. Independent association between fatty pancreas and incidence and incidence of type 2 diabetes: 5-year Japanese cohort study. Diabetes Care 2016; 39(10): 1677– 1683. doi: 10.2337/ dc16-0074.
52. Sahin S, Yerlikaya MG, Ozdenya M.et al. Non-Alcoholic Fatty Pancreas Disease is Associated with SYNTAX Score in Acute Coronary Syndrome. Acta Cardiol Sin 2022; 38(6): 683– 690. doi: 10.6515/ ACS.202211_38(6).20220424A.
53. Lim S, Meigs B. Links between ectopic fatand vascular disease in humans. Arteroscler Thromb Vasc Biol 2014; 34(9): 1820– 1826. doi: 10.1161/ ATVBAHA.114.303035.
54. Rasool A, Dar W, Latief M et al. Nonalcoholic fatty liver disease as an independent risk factor for carotid artherosclerosis. Brain Circ 2017; 3(1): 35– 40. doi: 10.4103/ bc.bc_28_16.
55. Fracanzani A, Tiraboschi S, Pisano G et al. Progression of carotid vascular damage and cardiovascular events in non-alcoolic fatty liver disease patients compared to the general population during 10-years of follow up. Atherosclerosis 2016; 246: 208– 213. doi: 10.1016/ j. atherosclerosis.2016.01.016.
56. Arslan AA, Helzlsouer KJ, Kooperberg C et al. Anthropomeric measures, body mass index, and pancreatic cancer: pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Arch Intern Med 2010; 70(9): 791– 802. doi: 10.1001/ archinternmed.2010.63.
57. Hori M, Takahashi M, Hiraoka N et al. Association of pancreatic fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol 2014; 5(3): e53. doi: 10.1038/ ctg. 2014.5.
58. Otsuka N, Shimizu K, Taniai H et al. Risk factors for fatty pancreas and effects of fatty infiltation on pancreatic cancer. Front Physiol 2023; 14: 1243983. doi: 10.3389/ fphys.2023.1243983.
59. Sbeit W, Khoury T. Fatty pancreas represents a risk factor for acute pancreatitis: a pilot study. Pancreas 2021; 50(7): 990– 993. doi: 10.1097/ MPA.0000000000001867.
60. Shah N, Rocha JP, Bhutiani N et al. Nonalcoholic fatty pancreas disease. Nutr Clin Pract 2019; 34(Suppl 1): S49– S56. doi: 10.1002/ ncp.10397.