Nepřihlášený uživatel
přihlásit se / registrovat

Gastroenterologie
a hepatologie

Gastroenterology and Hepatology

Gastroent Hepatol 2019; 73(4): 303–307. doi:10.14735/amgh2019303.

Cystická fibróza a exokrinní pankreatická insuficience

Pavla Tesaříková, Lumír Kunovský, Jan Trna, Petr Dítě, Petr Jabandžiev, Jitka Vaculová, Zdeněk Kala

Souhrn

Cystická fibróza (CF) je genetická choroba postihující řadu orgánů vč. orgánů trávicího traktu. Zatímco postižení plic je nejvíce život ohrožující, pankreas je jedním z prvních a nejvíce postižených orgánů. Mutace v genu pro transmembránový regulátor vodivosti (CFTR) vede k poklesu tvorby pankreatické šťávy a zvýšené koncentraci makromolekul, což ve svém důsledku vede k precipitaci v duktech s jejich následnou obstrukcí a poškozením. Výsledný klinický projev závisí na kombinaci jednotlivých mutací, potenciální přítomnosti mutací v dalších chorobu modifikujících genech a případně na přítomnosti faktorů prostředí. CFTR mutace se historicky člení do 5 tříd – závažné mutace (třídy 1–3) a mírné mutace (třídy 4–5). Stupeň postižení funkce CFTR závisí na kombinaci mutací obou alel CFTR a je obecně určován mírnější z přítomných mutací. Většina pacientů s CF vykazuje exokrinní pankreatickou insuficienci již od časného dětství, protože ke ztrátě funkčního parenchymu dochází již v průběhu nitroděložního vývoje či krátce po porodu. Tito pacienti pouze vzácně trpí pankreatickými komplikacemi typu rekurentní akutní pankreatitidy či chronické pankreatitidy, které se naopak mohou vyskytnout u menšiny pacientů s určitým stupněm reziduální pankreatické exokrinní funkce. Mutace v CFTR bývají nacházeny častěji též ve skupině pacientů s idiopatickou a alkoholickou pankreatitidou, nicméně důkazy nejsou jednoznačné. U pacientů s idiopatickou formou bývá též nalézána kombinace s mutacemi v genu pro pankreatický sekreční inhibitor (SPINK-1) a přítomnost různých faktorů prostředí. Malnutrice přímo souvisí se zhoršením prognózy pacientů s CF, a podávání trávicích enzymů proto tvoří základní prvek léčby CF. Snižování kyselosti žaludeční šťávy a suplementace vitaminů pak představují důležité pomocné nástroje léčby.

Klíčová slova

CFTR, cystická fibróza, exokrinní pankreatická insuficience, malnutrice, pankreatitida

 
Celý článek je dostupný po přepnutí na anglickou verzi webové stránky (v pravém horním rohu).

Pro přístup k článku se, prosím, registrujte.

Výhody pro předplatitele

Výhody pro přihlášené

Literatura

1. Farrell PM, White TB, Ren CL et al. Diagnosis of cystic fibrosis: consensus guidelines from the cystic fibrosis foundation. J Pediatr 2017; 181: S4–S15. doi: 10.1016/j.jpeds.2016.09.064.
2. David J, Chrastina P, Pešková K et al. Epidemiology of rare diseases detected by newborn screening in the Czech Republic. Cent Eur J Public Health 2019; 27 (2): 153–159. doi: 10.21101/cejph.a5441.
3. Český registr cystické fibrózy. [online]. Dostupné na: www.cfregistr.cz.
4. Kopelman H, Corey M, Gaskin K et al. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology 1988; 95 (2): 349–355. doi: 10.1016/0016-5085 (88) 90490-8.
5. Whitcomb DC, Ermentrout GB. A mathematical model of the pancreatic duct cell generating high bicarbonate concentrations in pancreatic juice. Pancreas 2004; 29 (2): e30–e40.
6. Feigelson J, Pécau Y, Poquet M et al. Imaging changes in the pancreas in cystic fibrosis: a retrospective evaluation of 55 cases seen over a period of 9 years. J Pediatr Gastroenterol Nutr 2000; 30 (2): 145–151.
7. Votava F, Kožich V, Chrastina P et al. Výsledky rozšířeného novorozeneckého screeningu v České republice. Čes-slov Pediat 2014; 69 (2): 77–86.
8. Skalická V. Terapeutické trendy cystické fibrózy. Pediatr praxi 2014; 15 (6): 340–334.
9. Castellani C, Duff AJ, Bell SC et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018; 17 (2): 153–178. doi: 10.1016/j.jcf.2018.02.006.
10. Taylor CJ, Chen K, Horvath K et al. ESPGHAN and NASPGHAN report on the assessment of exocrine pancreatic function and pancreatitis in children. J Pediatr Gastroenterol Nutr 2015; 61 (1): 144–153. doi: 10.1097/MPG.0000000000000830.
11. Elborn JS. Cystic fibrosis. Lancet 2016; 388 (10059): 2519–2531. doi: 10.1016/S0140-6736 (16) 00576-6.
12. Mickle JE, Cutting GR. Genotype-phenotype relationships in cystic fibrosis. Med Clin North Am 2000; 84 (3): 597–607.
13. Uc A, Fishman DS. Pancreatic disorders. Pediatr Clin North Am 2017; 64 (3): 685–706. doi: 10.1016/j.pcl.2017.01.010.
14. Bonadia LC, de Lima Marson FA, Ribeiro JD et al. CFTR genotype and clinical outcomes of adult patients carried as cystic fibrosis disease. Gene 2014; 540 (2): 183–190. doi: 10.1016/ j.gene.2014.02.040.
15. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993; 73 (7): 1251–1254. doi: 10.1016/0092-8674 (93) 90353-r.
16. Haardt M, Benharouga M, Lechardeur D et al. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem 1999; 274 (31): 21873–21877. doi: 10.1074/jbc.274.31.21873.
17. Rowntree RK, Harris A. The phenotypic consequences of CFTR mutations. Ann Hum Genet 2003; 67 (Pt 5): 471–485.
18. Stern RC. The diagnosis of cystic fibrosis. N Engl J Med 1997; 336 (7): 487–491. doi: 10.1056/NEJM199702133360707.
19. Fanen P, Wohlhuter-Haddad A, Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol 2014; 52: 94–102. doi: 10.1016/j.biocel.2014.02.023.
20. Durno C, Corey M, Zielenski J et al. Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis. Gastroenterology 2002; 123 (6): 1857–1864. doi: 10.1053/gast.2002.37042.
21. Wilschanski M, Durie PR. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 2007; 56 (8): 1153–1163. doi: 10.1136/gut.2004.062786.
22. Abu-El-Haija M, Valencia CA, Hornung L et al. Genetic variants in acute, acute recurrent and chronic pancreatitis affect the progression of disease in children. Pancreatology 2019; 19 (4): 535–540. doi: 10.1016/j.pan.2019.05.001.
23. Whitcomb DC. Value of genetic testing in the management of pancreatitis. Gut 2004; 53 (11): 1710–1717. doi: 10.1136/gut.2003.015511.
24. Cavestro GM, Zuppardo RA, Bertolini S et al. Connections between genetics and clinical data: role of MCP-1, CFTR, and SPINK-1 in the setting of acute, acute recurrent, and chronic pancreatitis. Am J Gastroenterol 2010; 105 (1): 199–206. doi: 10.1038/ajg.2009.611.
25. Vue PM, McFann K, Narkewicz MR. Genetic mutations in pediatric pancreatitis. Pancreas 2016; 45 (7): 992–996. doi: 10.1097/MPA.0000000000000589.
26. Bertin C, Pelletier AL, Vullierme MP et al. Pancreas divisum is not a cause of pancreatitis by itself but acts as a partner of genetic mutations. Am J Gastroenterol 2012; 107 (2): 311–317. doi: 10.1038/ajg.2011.424.
27. Ellis I. Genetic counseling for hereditary pancreatitis – the role of molecular genetics testing for the cationic trypsinogen gene, cystic fibrosis and serine protease inhibitor Kazal type 1. Gastroenterol Clin North Am 2004; 33 (4): 839–854. doi: 10.1016/j.gtc.2004.07.010.
28. Garg PK, Khajuria R, Kabra M et al. Association of SPINK1 gene mutation and CFTR gene polymorphisms in patients with pancreas divisum presenting with idiopathic pancreatitis. J Clin Gastroenterol 2009; 43 (9): 848–852. doi: 10.1097/MCG.0b013e3181a4e772.
29. Singh VK, Schwarzenberg SJ. Pancreatic insufficiency in cystic fibrosis. J Cyst Fibros 2017; 16 (Suppl 2): S70–S78. doi: 10.1016/j.jcf.2017.06.011.
30. De Boeck K, Weren M, Proesmans M et al. Pancreatitis among patients with cystic fibrosis: correlation with pancreatic status and genotype. Pediatrics 2005; 115 (4): e463–e469. doi: 10.1542/peds.2004-1764.
31. Choi JY, Muallem D, Kiselyov K et al. Aberrant CFTR-dependent HCO3-transport in mutations associated with cystic fibrosis. Nature 2001; 410 (6824): 94–97. doi: 10.1038/35065099.
32. Wilschanski M, Novak I. The cystic fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med 2013; 3 (5): a009746. doi: 10.1101/cshperspect.a009746.
33.Whitcomb DC. Genetic polymorphisms in alcoholic pancreatitis. Dig Dis 2005; 23 (3–4): 247–254. doi: 10.1159/000090172.
34. Şişman G, Tuğcu M, Ayla K et al. Mutation analysis of PRSS1, SPINK1 and CFTR gene in patients with alcoholic and idiopathic chronic pancreatitis: a single center study. Turk J Gastroenterol 2015; 26 (2): 176–180. doi: 10.5152/tjg.2015.4287.
35. Midha S, Khajuria R, Shastri S et al. Idiopathic chronic pancreatitis in India: phenotypic characterisation and strong genetic susceptibility due to SPINK1 and CFTR gene mutations. Gut 2010; 59 (6): 800–807. doi: 10.1136/gut.2009.191239.
36. Van de Vijver E, Desager K, Mulberg AE et al. Treatment of infants and toddlers with cystic fibrosis-related pancreatic insufficiency and fat malabsorption with pancrelipase MT. J Pediatr Gastroenterol Nutr 2011; 53 (1): 61–64. doi: 10.1097/MPG.0b013e31820e208e.
37. Trapnell BC, Maguiness K, Graff GR et al. Efficacy and safety of Creon 24,000 in subjects with exocrine pancreatic insufficiency due to cystic fibrosis. J Cyst Fibros 2009; 8 (6): 370–377. doi: 10.1016/j.jcf.2009.08.008.
38. DiMagno EP. Gastric acid suppression and treatment of severe exocrine pancreatic insufficiency. Best Pract Res Clin Gastroenterol 2001; 15 (3): 477–486. doi: 10.1053/bega.2001.0195.
39. Gan KH, Geus WP, Bakker W et al. In vitro dissolution profiles of enteric-coated microsphere/microtablet pancreatin preparations at different pH values. Aliment Pharmacol Ther 1996; 10 (5): 771–775.
40. Ayoub F, Lascano J, Morelli G. Proton Pump inhibitor use is associated with an increased frequency of hospitalization in patients with cystic fibrosis. Gastroenterology Res 2017; 10 (5): 288–293. doi: 10.14740/gr917w.
41. Borowitz D, Durie PR, Clarke LL et al. Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr 2005; 41 (3): 273–285.
42. Maqbool A, Stallings VA. Update on fat-soluble vitamins in cystic fibrosis. Curr Opin Pulm Med 2008; 14 (6): 574–581. doi: 10.1097/MCP.0b013e3283136787.
43. Condren ME, Bradshaw MD. Ivacaftor: a novel gene-based therapeutic approach for cystic fibrosis. J Pediatr Pharmacol Ther 2013; 18 (1): 8–13. doi: 10.5863/1551-6776-18.1.8.
44. Dřevínek P. Kauzální terapie cystické fibrózy. Postgrad med 2014; 16 (1): 21–22.
45. Brewington JJ, McPhail GL, Clancy JP. Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction. Expert Rev Respir Med 2016; 10 (1): 5–17. doi: 10.1586/17476348.2016.1122527.
46. Walker S, Flume P, McNamara J et al. A phase 3 study of tezacaftor in combination with ivacaftor in children aged 6 through 11 years with cystic fibrosis. J Cyst Fibros 2019. In press. doi: 10.1016/j.jcf.2019.06.009.
47. Cuppens H. What is clinically relevant about the genetics of cystic fibrosis? In: Dominguez-Munoz JE (ed). Clinical pancreatology for practising gastroenterologists and surgeons. Blackwell Publishing 2005: 214–219.

Kreditovaný autodidaktický test