Anonymous User
Login / Registration

Gastroenterologie
a hepatologie

Gastroenterology and Hepatology

Gastroent Hepatol 2018; 72(4): 304–308. doi:10.14735/amgh2018304.

Experimental enteroscopy using a capsule with a side view

Ilja Tachecí Orcid.org  1, Jaroslav Květina Orcid.org  2, Eva Peterová2, Věra Radochová3, Marcela Kopáčová Orcid.org  1, Jan Bureš Orcid.org  1

+ Affiliation

Summary

Intoduction: Capsule endoscopy is a standard diagnostic method used especially in small bowel investigations. The main advantage is its non-invasiveness, both in clinical practice and in experimental settings. Aim: The aim of this pilot project was to develop a methodology to allow capsule endoscopy with a panoramic side view in an experimental pig and to verify this methodology in healthy animals. Methodology: A capsule endoscope with a side view was introduced into the duodenum of six healthy female pigs weighing 37.3 ± 3.0 kg using a gastroscope. The procedure was performed under general anesthesia. After the examination was completed, the endoscopic capsule was captured and the data were extracted and evaluated. Endoscopic findings, transit time through the small intestine, total examination time, and visibility of the small intestinal surface (duodenum, jejunum, and ileum) were evaluated in all animals. Results: Capsule endoscopy was performed without complications in all animals. In one case, the capsule returned and persisted in the stomach for the entire investigation. Enteroscopic findings were normal in all the remaining five animals. Conclusions: Capsule endoscopy is technically feasible. Endoscopic findings in the small intestine obtained by this method are comparable to those obtained in humans. The experimental capsule endoscopy results could provide an important basis for further preclinical projects.

Keywords

Sus scrofa f. domestica, experimental pig, capsule endoscopy, preclinical studies

To read this article in full, please register for free on this website.

Benefits for subscribers

Benefits for logged users

Literature

1. Davis SS, Illum L, Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol 2001; 53 (1): 33–39. doi: 0022-3573.
2. Graepler F, Wolter M, Vonthein R et al. Accuracy of the size estimation in wireless capsule endoscopy: calibrating the M2A PillCam (with video). Gastrointest Endosc 2008; 67 (6): 924–931. doi: 10.1016/j.gie.2007.10.060.
3. Appleyard M, Fireman Z, Glukhovsky A et al. A randomized trial comparing wireless capsule endoscopy with push enteroscopy for the detection of small-bowel lesions. Gastroenterology 2000; 119 (6): 1431–1438. doi: 0016-5085.
4. Kopáčová M, Tachecí I, Květina J et al. Wireless video capsule enteroscopy in preclinical studies: methodical design of its applicability in experimental pigs. Digestive diseases and sciences 2009; 55 (3): 626–630. doi: 10.1007/s10620-009-0779-3.
5. Tachecí I, Květina J, Bureš J et al. Wireless  capsule endoscopy in enteropathy induced by nonsteroidal anti-inflammatory drugs in pigs. Digestive diseases and sciences 2010; 55 (9): 2471–2477.
6. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (No 123, Council of Europe) 1991; Strasbourg. [online]. http: //ec.europa.eu/world/agreements/downloadFile.do?fullText=yes&treatyTransId=1346.
7. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16 (5): 351–380. doi: 10.1002/bdd.2510160502.
8. Bureš J, Jun D, Hrabinová M et al. Impact of tacrine and 7-methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuro Endocrinol Lett 2015; 36 (Suppl 1): 150–155.
9. Bureš J, Kopáčová M, Květina J et al. Different solutions used for submucosal injection influenced early healing of gastric endoscopic mucosal resection in a preclinical study in experimental pigs. Surg Endosc 2009; 23 (9): 2094–2101. doi: 10.1007/s00464-008-0207-3.
10. Bureš J, Květina J, Pavlík M et al. Impact of  paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuro Endocrinol Lett 2013; 34 (Suppl 2): 79–83.
11. Bureš J, Šmajs D, Květina J et al. Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle. World J Gastroenterol 2011; 17 (5): 609–617. doi: 10.3748/ wjg.v17.i5.609.
12. Bureš J, Květina J, Tachecí I et al. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J Appl Biomed 2015; 13 (4): 273–277. doi: 10.1016/j.jab.2015.04.004.
13. Kuneš M, Květina J, Bureš J et al. HI-6 oxime (an acetylcholinesterase reactivator): blood plasma pharmacokinetics and organ distribution in experimental pigs. Neuro Endocrinol Lett 2014; 35 (Suppl 2): 191–196.
14. Květina J, Kuneš M, Bureš J et al. The use of wireless capsule enteroscopy in a preclinical study: a novel diagnostic tool for indomethacin-induced gastrointestinal injury in experimental pigs. Neuro Endocrinol Lett 2008; 29 (5): 763–769.
15. Květina J, Tachecí I, Nobilis M et al. The importance of wireless capsule endoscopy for research into the intestin al absorption window of 5-aminosalicylic acid in experimental pigs. Curr Pharm Des 2017; 23 (12): 1873–1876. doi: 10.2174/1381612822666161201145247.
16. Květina J, Tachecí I, Pavlík M et al. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol Res 2015; 64 (Suppl 5): S647–S652.
17. Tachecí I, Květina J, Kuneš M et al. Electrogastrography in experimental pigs: the influence of gastrointestinal injury induced by dextran sodium sulphate on porcine gastric erythromycin-stimulated myoelectric activity. Neuro Endocrinol Lett 2011; 32 (Suppl 1):  131–136.
18. Tachecí I, Květina J, Kuneš M et al. The effect of general anaesthesia on gastric myoelectric activity in experimental pigs. BMC Gastroenterol 2013; 13 (48). doi: 10.1186/1471-230X-13-48.
19. Tachecí I, Květina J, Pavlík M et al. Impact of water load test on the gastric myoelectric activity in experimental pigs. Gastroenterology 2014; 5 (Suppl 1): S269. doi: 10.1016/S0016-5085 (14) 60951-3.
20. Friedrich K, Gehrke S, Stremmel W et al. First clinical trial of a newly developed capsule endoscope with panoramic side view for small bowel: a pilot study. J Gastroenterol Hepatol 2013; 28 (9): 1496–1501. doi: 10.1111/jgh. 12280.
21. Zwinger LL, Siegmund B, Stroux A et al. CapsoCam SV-1 versus PillCam SB 3 in the detection of obscure gastrointestinal bleeding: results of a prospective randomized comparative multicenter study. J Clin Gastroenterol 2018. In press. doi: 10.1097/MCG.0000000000000994.
22. Pioche M, Vanbiervliet G, Jacob P et al. Prospective randomized comparison between axial-and lateral-viewing capsule endoscopy systems in patients with obscure digestive bleeding. Endoscopy 2014; 46 (6): 479–484. doi: 10.1055/s-0033-1358832.
23. Seaman DL, de la Mora Levy J, Gostout CJ et al. An animal training model for endoscopic treatment of Zenker‘s diverticulum. Gastrointest Endosc 2007; 65 (7): 1050–1053. doi: 10.1016/j.gie.2006.10.052.

Credited self-teaching test